
Algorithm
2014 Fall Semester

Greedy Algorithm

http://www.skku.edu/new_home/eng/

Optimization problems

• An optimization problem is one in which you want
to find, not just a solution, but the best solution

• A “greedy algorithm” sometimes works well for
optimization problems

• A greedy algorithm works in phases. At each phase:
– You take the best you can get right now, without regard

for future consequences

– You hope that by choosing a local optimum at each step,
you will end up at a global optimum

2 / 23

http://www.skku.edu/new_home/eng/

Example: Counting money

• Suppose you want to count out a certain amount of
money, using the fewest possible bills and coins

• A greedy algorithm would do this would be:
At each step, take the largest possible bill or coin
that does not overshoot
– Example: To make $6.39, you can choose:

• a $5 bill

• a $1 bill, to make $6

• a 25¢ coin, to make $6.25

• A 10¢ coin, to make $6.35

• four 1¢ coins, to make $6.39

• For US money, the greedy algorithm always gives the
optimum solution

3 / 23

http://www.skku.edu/new_home/eng/

A failure of the greedy algorithm

• In some (fictional) monetary system, “krons” come in
1 kron, 7 kron, and 10 kron coins

• Using a greedy algorithm to count out 15 krons, you
would get
– A 10 kron piece

– Five 1 kron pieces, for a total of 15 krons

– This requires six coins

• A better solution would be to use two 7 kron pieces
and one 1 kron piece
– This only requires three coins

• The greedy algorithm results in a solution, but not
in an optimal solution

4 / 23

http://www.skku.edu/new_home/eng/

Example : Making changes

5 / 23

http://www.skku.edu/new_home/eng/
http://en.wikipedia.org/wiki/Image:Greedy_algorithm_change_diagram.jpg

• Any binary tree with edges labeled with 0’s and 1’s yields a prefix-
free code of characters assigned to its leaves

• Optimal binary tree minimizing the expected (weighted average)
length of a codeword can be constructed as follows

Huffman’s algorithm

Initialize n one-node trees with alphabet characters and the tree

weights with their frequencies.

Repeat the following step n-1 times: join two binary trees with

smallest weights into one (as left and right subtrees) and make

its weight equal the sum of the weights of the two trees.

Mark edges leading to left and right subtrees with 0’s and 1’s,

respectively.

Huffman codes

6 / 23

http://www.skku.edu/new_home/eng/

Huffman encoding

• The Huffman encoding algorithm is a greedy algorithm

• You always pick the two smallest numbers to combine

22 12 24 6 27 9

 A B C D E F

15

27

46

54

100

A=00

B=100

C=01

D=1010

E=11

F=1011

7 / 23

http://www.skku.edu/new_home/eng/

character A B C D _

frequency 0.35 0.1 0.2 0.2 0.15

codeword 11 100 00 01 101

Encode the text ADCB :

 110100100

Decode the text whose encoding is

 0001100101110001 :

 CDB_ACD

0.25

0.1

B

0.15

_

0.2

C

0.2

D

0.35

A

0.2

C

0.2

D

0.35

A

0.1

B

0.15

_

0.4

0.2

C

0.2

D

0.6

0.25

0.1

B

0.15

_

0.6

1.0

0 1

0.4

0.2

C

0.2

D
0.25

0.1

B

0.15

_

0 1 0

0

1

1

0.25

0.1

B

0.15

_

0.35

A

0.4

0.2

C

0.2

D

0.35

A

0.35

A

Example

8 / 23

http://www.skku.edu/new_home/eng/

In-Class Exercise

• Build a huffman tree for the following:

Ax={ a , b , c , d , e }

Px={0.25, 0.25, 0.2, 0.15, 0.15}

• Define the codeword for each alphabet.

• Encode the text - bbcddeabc

9 / 23

http://www.skku.edu/new_home/eng/

Minimum spanning tree

• A minimum spanning tree is a least-cost subset of the edges of a
graph that connects all the nodes
– Start by picking any node and adding it to the tree

– Repeatedly: Pick any least-cost edge from a node in the tree to a node
not in the tree, and add the edge and new node to the tree

– Stop when all nodes have been added to the tree

• The result is a least-cost (3+3+2+2+2=12)
spanning tree

• If you think some other edge should be in
the spanning tree:
– Try adding that edge

– Note that the edge is part of a cycle

– To break the cycle, you must remove the
edge with the greatest cost

• This will be the edge you just added

1

2
3

4

5

6

3 3

3

3

2

2

2

4

4

4

10 / 23

http://www.skku.edu/new_home/eng/

Traveling salesman

• A salesman must visit every city (starting from city A), and wants
to cover the least possible distance
– He can revisit a city (and reuse a road) if necessary

• He does this by using a greedy algorithm: He goes to the next
nearest city from wherever he is

• From A he goes to B
• From B he goes to D
• This is not going to result in a

shortest path!

• The best result he can get now will
be ABDBCE, at a cost of 16

• An actual least-cost path from A is
ADBCE, at a cost of 14

E

A B C

D

2

3 3

4

4 4

11 / 23

http://www.skku.edu/new_home/eng/

Other greedy algorithms

• Dijkstra’s algorithm for finding the shortest path in a
graph
– Always takes the shortest edge connecting a known node to

an unknown node

• Prim’s algorithm for finding a minimum-cost
spanning tree
– Always takes the lowest-cost edge between nodes in the

spanning tree and nodes not yet in the spanning tree

• Kruskal’s algorithm for finding a minimum-cost
spanning tree
– Always tries the lowest-cost remaining edge

 12 / 23

http://www.skku.edu/new_home/eng/

Dijkstra : Example

Tree vertices Remaining vertices

 a(-,0) b(a,3) c(-,∞) d(a,7) e(-,∞)

a

b

d

4
c

e

3

7 4

6
2 5

a

b

d

4
c

e

3

7 4

6
2 5

a

b

d

4
c

e

3

7 4

6
2 5

 b(a,3) c(b,3+4) d(b,3+2) e(-,∞)

 d(b,5) c(b,7) e(d,5+4)

 c(b,7) e(d,9)

 e(d,9)

d
4 a

b
4

e

3

7

6
2 5

c

d

a

b

d

4
c

e

3

7 4

6
2 5

In-Class Exercise

• Apply Dijkstra’s algorithm to find the shortest path in
the following graph.

14 / 23

http://www.skku.edu/new_home/eng/

Kruskal’s MST - Example

 c

d
b

a

4

2

6
1

3

c

d
b

a

2

6
1

3

c

d
b

a

4

2

6
1

3

c

d
b

a

4

2

6
1

3

c

d
b

a

4

2

6
1

3

c

d
b

a

2

1

3
15 / 23

http://www.skku.edu/new_home/eng/

Prim’s MST - Example

 c

d
b

a

4

2

6
1

3

c

d
b

a

4

2

6
1

3

c

d
b

a

4

2

6
1

3

c

d
b

a

4

2

6
1

3

c

d
b

a

4

2

6
1

3

16 / 23

http://www.skku.edu/new_home/eng/

In-Class Exercise

• Find a minimum-cost spanning tree
① Kruskal

② Prim

17 / 23

http://www.skku.edu/new_home/eng/

Connecting wires
• There are n white dots and n black dots, equally spaced, in a line

• You want to connect each white dot with some one black dot,
with a minimum total length of “wire”

• Example:

• Total wire length above is 1 + 1 + 1 + 5 = 8

• Do you see a greedy algorithm for doing this?

• Does the algorithm guarantee an optimal solution?
– Can you prove it?

– Can you find a counterexample?

18 / 23

http://www.skku.edu/new_home/eng/

A scheduling problem

• You have to run nine jobs, with running times of 3, 5, 6, 10, 11, 14,
15, 18, and 20 minutes

• You have three processors on which you can run these jobs

• You decide to do the longest-running jobs first, on whatever
processor is available

20

18

15 14

11

10

6

5

3 P1

P2

P3

• Time to completion: 18 + 11 + 6 = 35 minutes

• This solution isn’t bad, but we might be able to do better

19 / 23

http://www.skku.edu/new_home/eng/

Another approach

• What would be the result if you ran the shortest job first?

• Again, the running times are 3, 5, 6, 10, 11, 14, 15, 18, and 20
minutes

• That wasn’t such a good idea; time to completion is now
6 + 14 + 20 = 40 minutes

• Note, however, that the greedy algorithm itself is fast

– All we had to do at each stage was pick the minimum or
maximum

20

18

15

14

11

10

6

5

3 P1

P2

P3

20 / 23

http://www.skku.edu/new_home/eng/

An optimum solution

• Better solutions do exist:

20

18

15

14

11

10 6

5

3

P1

P2

P3

21 / 23

http://www.skku.edu/new_home/eng/

Task Scheduling

• Given: a set T of n tasks, each having:
– A start time, si

– A finish time, fi (where si < fi)

• Goal: Perform all the tasks using a minimum number
of “machines.”

1 9 8 7 6 5 4 3 2

Machine 1

Machine 3

Machine 2

22 / 23

http://www.skku.edu/new_home/eng/

Example

• Given: a set T of n tasks, each having:
– A start time, si

– A finish time, fi (where si < fi)

– [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)

• Goal: Perform all tasks on min. number of machines

23 / 23

http://www.skku.edu/new_home/eng/

Q & A

http://www.skku.edu/new_home/eng/

