
Algorithm
2014 Fall Semester

Decrease and Conquer

http://www.skku.edu/new_home/eng/

BASIC CONCEPTS

2 / 82

http://www.skku.edu/new_home/eng/

Decrease and Conquer

1. Reduce a problem instance to a smaller instance of
the same problem and extend solution

2. Solve the smaller instance

3. Extend solution of smaller instance to obtain solution
to original problem

• Also referred to as inductive, incremental approach or
chip and conquer

3 / 82

http://www.skku.edu/new_home/eng/

Examples of Decrease & Conquer

• Decrease by one:
– Insertion sort
– Graph search algorithms:

• DFS
• BFS
• Topological sorting

– Algorithms for generating permutations, subsets

• Decrease by a constant factor
– Binary search
– Fake-coin problems
– multiplication à la russe
– Josephus problem

• Variable-size decrease
– Euclid’s algorithm
– Selection by partition

4 / 82

http://www.skku.edu/new_home/eng/

What’s the difference?

Consider the problem of exponentiation:

 Compute an

• Brute Force:

• Divide and conquer:

• Decrease by one:

• Decrease by constant factor:

5 / 82

http://www.skku.edu/new_home/eng/

What’s the difference?

Consider the problem of exponentiation:

 Compute an

• Brute Force: an= a*a*a*a*...*a

• Divide and conquer: an= an/2 * an/2

• Decrease by one: an= an-1* a

• Decrease by constant factor: an= (an/2)2

6 / 82

http://www.skku.edu/new_home/eng/

GRAPH

7 / 82

http://www.skku.edu/new_home/eng/

Graph Traversal

• Many problems require processing all graph vertices in
systematic fashion

• Graph traversal algorithms:

– Depth-first search

– Breadth-first search

• First, some definitions!

8 / 82

http://www.skku.edu/new_home/eng/

Graphs
• A (simple) graph G = (V, E) consists of

– V, a nonempty set of vertices

– E, a set of unordered pairs of distinct vertices called edges.

• Examples:

9 / 82

http://www.skku.edu/new_home/eng/

Directed Graphs
• A directed graph (digraph) G = (V, E) consists of

– V, a nonempty set of vertices

– E, a set of ordered pairs of distinct vertices called edges.

• Examples:

10 / 82

http://www.skku.edu/new_home/eng/

Weighted Graph
• A weighted graph is a triple G = (V, E, W)

– where (V, E) is a graph (or a digraph) and

– W is a function from E into R, the reals (integer or
rationals).

– For an edge e, W(e) is called the weight of e.

• A weighted digraph is often called a network.

• Examples

11 / 82

http://www.skku.edu/new_home/eng/

Graph Terminology
• Let u and v be vertices, and let e = (u,v) be an

edge in an undirected graph G.
– The vertices u and v are adjacent.

– The edge e is incident with both vertices u and v.

– The edge e connects u and v.

– The vertices u and v are the endpoints of edge e.

– The degree of a vertex, denoted deg(v), in an undirected
graph is the number of edges incident with it (where self-
loops are counted twice).

12 / 82

http://www.skku.edu/new_home/eng/

Examples

13 / 82

http://www.skku.edu/new_home/eng/

Vertex Degree Examples

14 / 82

http://www.skku.edu/new_home/eng/

More Graph Terminology
• A subgraph of a graph G = (V, E) is a graph

 G = (V, E) such that V  V and E  E.

(a simple path)

 A path is a sequence of vertices v1, v2, v3, …, vk such that
consecutive vertices vi and vi+1 are adjacent.

15 / 82

http://www.skku.edu/new_home/eng/

Graph Representations using
Data Structures

• Adjacency Matrix Representation
– Let G = (V, E), n = |V|, m = |E|, V = {v1, v2, …, vn)

– G can be represented by an n  n matrix C

16 / 82

http://www.skku.edu/new_home/eng/

Adjacency Matrix for weight digraph

17 / 82

http://www.skku.edu/new_home/eng/

Adjacency List Representation

18 / 82

http://www.skku.edu/new_home/eng/

Weighted Digraph Adjacency List Representation

19 / 82

http://www.skku.edu/new_home/eng/

More Definitions
• Subgraph
• Symmetric digraph
• Complete graph
• Adjacency relation
• Path, simple path, reachable
• Connected, Strongly Connected
• Cycle, simple cycle
• Acyclic
• Undirected forest
• Free tree, undirected tree
• Rooted tree
• Connected component

20 / 82

http://www.skku.edu/new_home/eng/

Traversing Graphs
• Most algorithms for solving problems on a

graph examine or process each vertex and each
edge.

• Depth-First Search (DFS) and Breadth-First
Search (BFS)
– Two elementary traversal strategies that provide an

efficient way to “visit” each vertex and edge exactly once.

– Both work on directed or undirected graphs.

– Many advanced graph algorithms are based on the
concepts of DFS or BFS.

– The difference between the two algorithms is in the order
in which each “visits” vertices.

21 / 82

http://www.skku.edu/new_home/eng/

DECREASE BY ONE

22 / 82

http://www.skku.edu/new_home/eng/

Depth-first search
• Explore graph always moving away from last visited

vertex

• Pseudocode for Depth-first-search of graph G=(V,E)

dfs(v)

count := count + 1

mark v with count

for each vertex w adjacent to v do

if w is marked with 0

dfs(w)

DFS(G)

count :=0

mark each vertex with 0 (unvisited)

for each vertex v V do

if v is marked with 0

dfs(v)

23 / 82

http://www.skku.edu/new_home/eng/

Example – undirected graph

• Depth-first traversal:

a b

e f

c d

g h

dfs(v)

count := count + 1

mark v with count

for each vertex w adjacent
to v do

if w is marked with 0

dfs(w)

24 / 82

http://www.skku.edu/new_home/eng/

DFS stack and forest
a b

e f

c d

g h

a

b

e

f
c

d

g

h 25 / 82

http://www.skku.edu/new_home/eng/

Types of edges

• Tree edges: edges comprising forest

• Back edges: edges to ancestor nodes

26 / 82

http://www.skku.edu/new_home/eng/

Question

• How to rewrite the procedure dfs(v), using a stack to
eliminate recursion

dfs(v)

count := count + 1

mark v with count

for each vertex w adjacent to v do

if w is marked with 0

dfs(w)

27 / 82

http://www.skku.edu/new_home/eng/

Non-recursive version of DFS algorithm

Algorithm dfs(v)

s.createStack();
s.push(v);
count := count + 1
mark v with count
while (!s.isEmpty()) {
 let x be the node on the top of the stack s;
 if (no unvisited nodes are adjacent to x)
 s.pop(); // backtrack
 else {
 select an unvisited node u adjacent to x;
 s.push(u);
 count := count + 1
 mark u with count
 }
}

28 / 82

http://www.skku.edu/new_home/eng/

DFS stack and forest

a1,8 b2,7 f3,2 e4,1

 g5,6 c6,5 d7,4 h8,3

preorder: a b f e g c d h

postorder: e f h d c g b a

a b

e f

c d

g h

a

b

e

f
c

d

g

h 29 / 82

http://www.skku.edu/new_home/eng/

Depth-first search: Notes

• Yields two distinct ordering of vertices:
– preorder: as vertices are first encountered (pushed onto stack)

– postorder: as vertices become dead-ends (popped off stack)

• Applications:
– checking connectivity, finding connected components

– checking acyclicity

– searching state-space of problems for solution (AI)

30 / 82

http://www.skku.edu/new_home/eng/

In-class Exercise
• Consider the graph

a. Write down the adjacency matrix and adjacency lists specifying this

graph. (Assume that the matrix rows and columns and vertices in the

adjacency lists follow in the alphabetical order of the vertex labels.)

b. Starting at vertex A and resolving ties by the vertex alphabetical order,

traverse the graph by depth-first search and construct the corresponding

depth-first search tree. Give the order in which the vertices were reached

for the first time (pushed onto the traversal stack) and the order in which

the vertices became dead ends (popped off the stack).

31 / 82

http://www.skku.edu/new_home/eng/

Maze traversal

32 / 82

http://www.skku.edu/new_home/eng/

Maze and graph representing it (I)

33 / 82

http://www.skku.edu/new_home/eng/

Maze and graph representing it (II)

34 / 82

http://www.skku.edu/new_home/eng/

Breadth-first search

• Explore graph moving across to all the neighbors of
last visited vertex

• Similar to level-by-level tree traversals

• Instead of a stack, breadth-first uses queue

• Applications: same as DFS, but can also find paths
from a vertex to all other vertices with the smallest
number of edges

35 / 82

http://www.skku.edu/new_home/eng/

Example – undirected graph

• Breadth-first traversal:

a b

e f

c d

g h

36 / 82

http://www.skku.edu/new_home/eng/

BFS queue and forest

• a b e f g c h d

a b

e f

c d

g h

a

b e f

c

d

g

h

37 / 82

http://www.skku.edu/new_home/eng/

Breadth-first search algorithm
bfs(v)

count := count + 1

mark v with count

initialize queue with v

while queue is not empty do

a := front of queue

for each vertex w adjacent to a do

if w is marked with 0

count := count + 1

mark w with count

add w to the end of the queue

remove a from the front of the queue

BFS(G)
count :=0
mark each vertex with 0

for each vertex v V do
if v is marked with 0

bfs(v)

38 / 82

http://www.skku.edu/new_home/eng/

Directed acyclic graphs
• A directed acyclic graph or DAG is a directed graph

with no directed cycles:

a b

c d

not a dag

a dag

39 / 82

http://www.skku.edu/new_home/eng/

Directed acyclic graphs (DAG)

• Arise in many modeling problems, e.g.:

– course prerequisite structure

– food chains

• Imply partial ordering on the domain

40 / 82

http://www.skku.edu/new_home/eng/

Topological Sort

• Topological sort of a DAG:
– Linear ordering of all vertices in graph G

 such that for every edge (u, v)  G, the
vertex, u, where the edge starts is listed
before the vertex, v, where the edge ends.

cs101

cs203

math101

cs310

cs401

cs825

cs525

cs990

41 / 82

http://www.skku.edu/new_home/eng/

Topological Sort

42 / 82

http://www.skku.edu/new_home/eng/

Topological Sorting Example

• Order the following items in a food chain

fish

human

shrimp

sheep

wheat plankton

tiger

43 / 82

http://www.skku.edu/new_home/eng/

Topological sorting Algorithms

1. DFS-based algorithm:
– DFS traversal noting order vertices are popped off stack

– Reverse order solves topological sorting

– Back edges encountered?→ NOT a dag!

2. Source removal algorithm
– Repeatedly identify and remove a source vertex, ie, a vertex

that has no incoming edges

44 / 82

http://www.skku.edu/new_home/eng/

Question

• How would you find a source (or determine that such
a vertex does not exist) in a digraph

– represented by adjacency matrix?

– represented by adjacency linked list?

45 / 82

http://www.skku.edu/new_home/eng/

DECREASE BY
A CONSTANT FACTOR

46 / 82

http://www.skku.edu/new_home/eng/

Decrease by a constant factor
- Examples

• Fake-coin problem

• Multiplication à la russe (Russian peasant method)

• Josephus problem

47 / 82

http://www.skku.edu/new_home/eng/

Fake-Coin Puzzle (simpler version)

There are n identically looking coins one of which is fake.
There is a balance scale but there are no weights; the
scale can tell whether two sets of coins weigh the same
and, if not, which of the two sets is heavier (but not by
how much). Design an efficient algorithm for detecting
the fake coin. Assume that the fake coin is known to be
lighter than the genuine ones.

Decrease by factor 2 algorithm

Decrease by factor 3 algorithm

http://www.skku.edu/new_home/eng/

Russian peasant method

• n*m

• If n is even, n*m = (n/2)*(2m)

• If n is odd, n*m = ((n-1)/2)*(2m)+m

• Repeat the above process until we have the trivial case
of 1*x = x

• Only simple operations: halving, doubling, and adding,
no need to memorize the table of multiplications

49 / 82

http://www.skku.edu/new_home/eng/

Russian peasant method -
Example

• Compute 50 * 65

50 / 82

http://www.skku.edu/new_home/eng/

Josephus problem

• Josephus Flavius Game
– Josephus Flavius was a famous Jewish historian of the first

century at the time of the Second Temple destruction. During
the Jewish-Roman war he got trapped in a cave with a group
of 40 soldiers surrounded by romans. The legend has it that
preferring suicide to capture, the Jews decided to form a circle
and, proceeding around it, to kill every third remaining person
until no one was left. Josephus, not keen to die, quickly found
the safe spot in the circle and thus stayed alive.

51 / 82

http://www.skku.edu/new_home/eng/
http://www.cut-the-knot.org/recurrence/flavius.shtml
http://www.cut-the-knot.org/recurrence/flavius.shtml

DECREASE BY
A VARIABLE SIZE

52 / 82

http://www.skku.edu/new_home/eng/

Decrease by a variable size
- Examples

• Euclid’s algorithm for greatest common divisor

• Selection problem

• Binary search tree

53 / 82

http://www.skku.edu/new_home/eng/

Euclid’s algorithm for greatest common divisor

• 50 : 1, 2, 5, 10, 25, 50

 20 : 1, 2, 4, 5, 10, 20

• GCD(x, y) = GCD(x-y, y)

 GCD(x,y) = GCD(y,x)

 Ex) GCD(50,20) = GCD(30,20) = GCD(10,20) = GCD(20,10) =

GCD(10,10) = GCD(0,10) = GCD(10,0)

• GCD(X,Y) = GCD(X%Y, Y)

 Ex) GCD(50,20) = GCD(10,20) = GCD (20,10) = GCD(0,10)

54 / 82

http://www.skku.edu/new_home/eng/

Euclid’s algorithm for
greatest common divisor

• Steps for 2 natural numbers n and m

– E1 : r ← m mod n;

– E2 : if (r = 0) then return;

– E3 : m ← n; n ← r;

55 / 82

http://www.skku.edu/new_home/eng/

The selection problem
• Input: A set S of n elements

• Output: The kth smallest element of S

• To find the median (the middle value)

• To find the smallest element

• To find the largest element

K = 1

K = n

K = 








2

n

56 / 82

http://www.skku.edu/new_home/eng/

The selection problem

• Input: A set S of n elements

• Output: The kth smallest element of S

• The straightforward algorithm:

– step 1: Sort the n elements

– step 2: Locate the kth element in the sorted list.

 This algorithm is overkill!

57 / 82

http://www.skku.edu/new_home/eng/

Search problem
• Search a key in a sorted list

– Sequential search

– Binary search

• How do you search for a name in a telephone book?

– Using binary search

58 / 82

http://www.skku.edu/new_home/eng/

Binary Search Trees (BSTs)

• Binary Search Tree property
– A binary tree in which the key of an internal node is greater

than the keys in its left subtree and less than or equal to the
keys in its right subtree.

• An inorder traversal of a binary search tree produces a
sorted list of keys.

59 / 82

http://www.skku.edu/new_home/eng/

Variable-size-decrease: Binary search trees

• Keys are arranged in a binary tree with the binary
search tree property:

k

<k k

60 / 82

http://www.skku.edu/new_home/eng/

BST Examples
• Binary Search trees with different degrees of balance

• Black dots denote empty trees

• Size of a search tree
61 / 82

http://www.skku.edu/new_home/eng/

Variable-size-decrease: Binary search trees

• Arrange keys in a binary tree with the binary search
tree property:

k

<k  k

Example 1: 5, 10, 3, 1, 7, 12, 9

Example 2: 4, 5, 7, 2, 1, 3, 6

62 / 82

http://www.skku.edu/new_home/eng/

BST Operations

• Find the min/max element ()

• Search for an element

• Find the successor/predecessor of an element

• Insert an element

• Delete an element

63 / 82

http://www.skku.edu/new_home/eng/

BST: Min/Max
• The minimum element is the left-most node

x is a non-empty BST

 The maximum element is the right-most node

64 / 82

http://www.skku.edu/new_home/eng/

BST Operations

• Find the min/max element

• Search for an element ()

• Find the successor/predecessor of an element

• Insert an element

• Delete an element

65 / 82

http://www.skku.edu/new_home/eng/

BST Search (Retrieval)
Element bstSearch(BinTree bst, Key K)

1. Element found

2. if (bst == nil)

3. found = null;

4. else

5. Element root = root(bst);

6. if (K == root.key)

7. found = root;

8. else if (K < root.key)

9. found = bstSearch (leftSubtree(bst), K);

10. else

11. found = bstSearch(rightSubtree(bst), K);

12. return found;

66 / 82

http://www.skku.edu/new_home/eng/

BST Operations

• Find the min/max element

• Search for an element

• Find the successor/predecessor of an element ()

• Insert an element

• Delete an element

67 / 82

http://www.skku.edu/new_home/eng/

BST: Successor/Predecessor

• Finding the successor of a node x (if it exists):
– If x has a nonempty right subtree, then successor(x) is the

smallest element in the tree root at rightSubtree(x)

68 / 82

http://www.skku.edu/new_home/eng/

BST: Successor/Predecessor

• Finding the successor of a node x (if it exists):

– If rightSubtree(x) is empty, then successor(x) is the
lowest ancestor of x whose left child is also an ancestor
of x.

69 / 82

http://www.skku.edu/new_home/eng/

Why binary search tree?

Array: 1 3 4 5 7 8 9 10 13 17 21 23

BST:

70 / 82

http://www.skku.edu/new_home/eng/

BST: advantage

• The advantage to the binary search tree approach is
that it combines the advantage of an array--the ability
to do a binary search with the advantage of a linked
list--its dynamic size.

71 / 82

http://www.skku.edu/new_home/eng/

BST Operations

• Find the min/max element

• Search for an element

• Find the successor/predecessor of an element

• Insert an element ()

• Delete an element

72 / 82

http://www.skku.edu/new_home/eng/

BST: Insertion

• To insert a node into a BST, we search the tree until
we find a node whose appropriate subtree is empty,
and insert the new node there.

73 / 82

http://www.skku.edu/new_home/eng/

BST: Insertion

• Sample code for Insert

74 / 82

http://www.skku.edu/new_home/eng/

BST Operations

• Find the min/max element

• Search for an element

• Find the successor/predecessor of an element

• Insert an element

• Delete an element ()

75 / 82

http://www.skku.edu/new_home/eng/

BST: Delete

• Deleting a node z is by far the most difficult BST
operation.

• There are three cases to consider
– If z has no children, just delete it.

– If z has one child, splice out z, That is, link z’s parent and child

– If z has two children, splice out z’s successor y, and replace
the contents of z with the contents of y

• The last case works because if z has two children, then
its successor has no left child

76 / 82

http://www.skku.edu/new_home/eng/

BST: splice out examples

77 / 82

http://www.skku.edu/new_home/eng/

BST: splice out algorithm

Only works when a

node has at most

one child

78 / 82

http://www.skku.edu/new_home/eng/

BST: Deletion Algorithm

• Delete is now simple!

79 / 82

http://www.skku.edu/new_home/eng/

BST: delete examples

80 / 82

http://www.skku.edu/new_home/eng/

BST: one more delete example

81 / 82

http://www.skku.edu/new_home/eng/

Q & A

http://www.skku.edu/new_home/eng/

