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Decrease and C

uce a problem instance to a smaller instance of
he same problem and extend solution

2. Solve the smaller instance

3. Extend solution of smaller instance to obtain solution
to original problem

« Also referred to as /nductive incremental approach or
chip and conquer
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Examples of Decrease & C

sertion sort
- — Graph search algorithms:
« DFS
e BFS
« Topological sorting
— Algorithms for generating permutations, subsets

« Decrease by a constant factor

— Binary search

— Fake-coin problems

— multiplication a la russe
— Josephus problem

e Variable-size decrease

— Euclid’s algorithm
— Selection by partition
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What's the differ

e problem of exponentiation:
Compute g~

Brute Force:

Divide and conquer:

Decrease by one:

Decrease by constant factor:
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the problem of exponentiation:
Compute g~

Brute Force: @’= a*a*a’*a*..”a

Divide and conquer: a’= g72 * g"°

Decrease by one: @’= a"1*a

Decrease by constant factor: a’= (a7?)?
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Graph Trave

problems require processing all graph vertices in
stematic fashion

K Graph traversal algorithms:

— Depth-first search

— Breadth-first search

 First, some definitions!
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Graphs
graph G = (V/ £ consists of

4 E, a set of unordered pairs of distinct vertices called edges.
e Examples:

V= { A.B.C.D.E }
E={ (A,D),(A.E),(B,D),
(B,E),(C,D),(C,E)}

Z ' &
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/, @ nonempty set of vertices
” E, a set of ordered pairs of distinct vertices called edges.

e Examples:

—0
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ere (V. £ is a graph (or a digraph) and

— W is a function from £into R, the reals (integer or
rationals).

— For an edge ¢ W) is called the weight of e
« A weighted digraph is often called a network.
« Examples

B

SUNG KYUN KWAN
eS UNIVERSITY 11 11782



http://www.skku.edu/new_home/eng/

Graph Terminol

nd v be vertices, and let e = (¢, V) be an
edge in an undirected graph G.

— The vertices v and v are adjacent.

— The edge e s /ncident with both vertices v and v.

— The edge e connects u and v.

— The vertices v and v are the endpoints of edge e

— The degree of a vertex, denoted deg(V), in an undirected
graph is the number of edges incident with it (where self-
loops are counted twice).
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deg(u)=3 deg(u)=2 deg(u)=2
deg(v)=5 deg(v)=3 deg(v)=4
deg(w)=3 deg(w)=2 deg(w)=3
deg(x)=2 deg(x)=41 deg(x)=2
deg(y)=2 | deg(y)=3 | deg(y)=3
deg(z)=3 deg(z)=2
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J 1 E’) such that V’g Vand £’ c E

e

& A path is a sequence of vertices v,, V,, V3, ***, V| such that
consecutive vertices v; and v,,; are adjacent.

a (b a (b

(a simple path)
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— - -~ - ——

ancy Matrix Representation
— letG=(V B, n=|V m=|f V={, V2 .., vn)
— (G can be represented by an n x n matrix C

(a) An undirected graph (b) Its adjacency matrix
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A
7

Adjacency Matrix for w

e —— e

0 25.0 e o0 oo 0o oo
@ () 00140 ° oo =
6 30 e 0 e e |60

©@ o0 o0 o0 () o0 oo

o w0 o 320420 0 140

(a) A weighted digraph (b) Its adjacency matrix
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Adjacency Llst R
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{a) An undirected graph (b) Its adjacency matrix
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(a) A weighted digraph

N
o}

of 8§
o3&y
)

o

oo
oo o= 32.0 42,
oo

!
!
!

[1.0 O

(b) Its adjacency matrix

| 420 | —] 7 1+.0 | nil

adjinfo
1
3
4
s 1 nil
6
7
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More Defi q t

etric digraph
Complete graph
Adjacency relation
« Path, simple path, reachable

« Connected, Strongly Connected
« Cycle, simple cycle

« Acyclic

e Undirected forest

« Free tree, undirected tree

« Rooted tree

« Connected component
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Traversing Gr

gorithms for solving problems on a
aph examine or process each vertex and each
edge.

* Depth-First Search (DFS) and Breadth-First
Search (BFS)

— Two elementary traversal strategies that provide an
efficient way to “visit” each vertex and edge exactly once.

— Both work on directed or undirected graphs.

— Many advanced graph algorithms are based on the
concepts of DFS or BFS.

— The difference between the two algorithms is in the order
in which each “visits” vertices.
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REASE BY ONE
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‘Pseudocode for Depth-first-search of graph G=(V,E)

DFS(G) dfs(v)
count :=0 count := count + 1
mark each vertex with 0 (unvisited) mark v with count
for each vertex ve V do for each vertex w adjacent to vdo
if v is marked with O if wis marked with 0
dfs(v) dfs(w)
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Example — undirected,

dfs(v)
count := count + 1
mark v with count

« Depth-first traversal: for each vertex w adjacent
to vdo

if wis marked with 0
dfs(w)
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DFS stack and forest =

e ] 5
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Types of edges,

dges. edges comprising forest

« Back edges. edges to ancestor nodes
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0 rewrite the procedure dfs(v), using a stack to

eliminate recursion ‘;

dfs(v)

count := count + 1

mark v with count

for each vertex w adjacent to vdo
if wis marked with 0

dfs(w)
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Non-recursive version of DFS algorith

<

ount := count + 1
mark v with count
while (!s.isEmpty()) {
let x be the node on the top of the stack s;
if (no unvisited nodes are adjacent to x)
s.pop(); // backtrack
else {
select an unvisited node u adjacent to x;
s.push(u);
count ;= count + 1
mark u with count

)

surht: KYUN KWAN
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DFS stack cly .,“,gﬁ ast o
a
e
a1,8 b2,7 f3’2 e4,1 /, '/
95,6 C6,5 d7’4 h&3

preorder:abfegcdh \
postorder:efhdcgb a
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Depth'ert_Sea~ g

wo distinct ordering of vertices:
— preorder: as vertices are first encountered (pushed onto stack)
— postorder: as vertices become dead-ends (popped off stack)

« Applications:
— checking connectivity, finding connected components
— checking acyclicity
— searching state-space of problems for solution (Al)
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a. Write down the adjacency matrix and adjacency lists specifying this
graph. (Assume that the matrix rows and columns and vertices in the
adjacency lists follow in the alphabetical order of the vertex labels.)

b. Starting at vertex A and resolving ties by the vertex alphabetical order,
traverse the graph by depth-first search and construct the corresponding
depth-first search tree. Give the order in which the vertices were reached
for the first time (pushed onto the traversal stack) and the order in which
the vertices became dead ends (popped off the stack).
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Maze and gra

One can model a maze by having a vertex for a starting point, a finish-
ing point, dead ends, and all the points in the maze where more than one
path can be taken and then connecting the vertices according to the paths.

a. Construct such a graph for the following maze.

d|L
= =

_...
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lore graph moving across to all the neighbors of
“last visited vertex

« Similar to level-by-level tree traversals
+ Instead of a stack, breadth-first uses queue

« Applications: same as DFS, but can also find paths
from a vertex to all other vertices with the smallest
number of edges
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e Breadth-first traversal:
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BFS queue and fc
(o

b

e« abefgchd
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count ;= count + 1

each vertex with 0 mark v with count

for each vertex ve V do initialize queue with v
if v is marked with 0 while queue is not empty do
bfs(v)

a .= front of queue

for each vertex w adjacent to a do
if wis marked with O

count := count + 1

mark w with count

add w to the end of the queue
remove a from the front of the queue

6SUNG KYUN KWAN 38/ 82
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Directed acyclic gre
acyclic graph or DAG is a directed graph

a dag

not a dag
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Directed acyclic graph

"« Arise in many modeling problems, e.g.:
— course prerequisite structure
— food chains

« Imply partial ordering on the domain
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Topological Sort..

ogical sort of a DAG:
— Linear ordering of all vertices in graph G

such that for every edge (y, V) € G, the
vertex, u, where the edge starts is listed
before the vertex, v, where the edge ends.

@ math101 cs401 =\CS—525
;/_\ ;@90

\ ‘/—
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Topological sortin

pased algorithm:
DFS traversal noting order vertices are popped off stack
— Reverse order solves topological sorting
— Back edges encountered?— NOT a dag!

2. Source removal algorithm

— Repeatedly identify and remove a source vertex, ie, a vertex
that has no incoming edges
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yould you find a source (or determine that such
a vertex does not exist) in a digraph

— represented by adjacency matrix?

— represented by adjacency linked list?
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REASE BY
A CONSTANT FACTOR
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oin problem
« Multiplication a la russe (Russian peasant method)

« Josephus problem
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e n identically looking coins one of which is fake.
There Is a balance scale but there are no weights; the
scale can tell whether two sets of coins weigh the same
and, if not, which of the two sets is heavier (but not by
how much). Design an efficient algorithm for detecting
the fake coin. Assume that the fake coin is known to be
lighter than the genuine ones.

Decrease by factor 2 algorithm

Decrease by factor 3 algorithm
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Russian peasant.

. nis even, n*m = (n/2)*(2m)
e If nis odd, n*m = ((n-1)/2)*(2m)+m

« Repeat the above process until we have the trivial case
of 1*x = x

« Only simple operations: halving, doubling, and adding,
no need to memorize the table of multiplications

SUNG KYUN KWAN
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50 * 65

m ifn=1
n-m=1< (n/2) 2m if n is even
([n/2] - 2m+ m if nis odd

65

130
260 130

520

1, 040
2, 080 1, 040
2,080

- wao a3

3, 250
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sohus Flavius Game

— Josephus Flavius was a famous Jewish historian of the first
century at the time of the Second Temple destruction. During
the Jewish-Roman war he got trapped in a cave with a group
of 40 soldiers surrounded by romans. The legend has it that
preferring suicide to capture, the Jews decided to form a circle
and, proceeding around it, to kill every third remaining person
until no one was left. Josephus, not keen to die, quickly found
the safe spot in the circle and thus stayed alive.

OO Oog
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REASE BY
A VARIABLE SIZE
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algorithm for greatest common divisor
« Selection problem

« Binary search tree
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:1, 2, 4,5, 10, 20

« GCD(x, y) = GCD(x-y, y)
GCD(xy) = GCD(y,x)

Ex) GCD(50,20) = GCD(30,20) = GCD(10,20) = GCD(20,10) =
GCD(10,10) = GCD(0,10) = GCD(10,0)

o GCD(XY) = GCD(X%Y, Y)
Ex) GCD(50,20) = GCD(10,20) = GCD (20,10) = GCD(0,10)
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Euclid’s algorithm for
greatest common di

® —

— e ———
—

or 2 natural numbers n and m

= El:r < m mod n;
— E2:if (r = 0) then return;
—E3:m «<n n<«<r

a b E=xplanations

gcdl| 1071, 1029 The initial arauments

=|gcd 1029, 421 The second argument is 1071 mod 1029

= acdl a2, 2131 The second argument is 1029 mod 42

=| g 21, M The zecond argument iz 42 mod 21

= 21 Since bB=0, we return a
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¢ K= m To find the median (the middle value)

e K= 1 To find the smallest element

. K=mn To find the largest element
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-») UNIVERSITY


http://www.skku.edu/new_home/eng/

The selection pr

" A set S of n elements

» QOutput: The ki smallest element of S

« The straightforward algorithm:

— step 1: Sort the n elements
— step 2: Locate the kth element in the sorted list.

& This algorithm is overkill!
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e

Search probl

key In a sorted
2quential search
— Binary search

 How do you search for a name in a telephone book?

— Using binary search
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Binary Sea_r;h Trees (I

earch Tree property

- — A binary tree in which the key of an internal node is greater
than the keys in its left subtree and less than or equal to the
keys in its right subtree.

« An inorder traversal of a binary search tree produces a
sorted list of keys.
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e

Variable-size-decrease:

pinary tree with the binary

()

arranged In a
lree property.

<k >K
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e Size of a search tree

% SUNG KYUN KWAN
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Example 1: 5, 10, 3, 1, 7, 12, 9

@ Example 2: 4,5, 7,2, 1, 3,6

<k > Kk

SUNG KYUN KWAN 62 / 82
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« Find the min/max element ()

« Search for an element

« Find the successor/predecessor of an element
« Insert an element

« Delete an element

6 SUNG KYUN KWAN 63 / 82
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e Iéft most node

node Find_Min(x) {

Sa non-empty BST while (x->1left !=NIL)
x=x->left;

return x;

+

§ The maximum element is the rlght most node

node Find_Max(x) {
while (x=>right !=NTL)
x=x->right;

return x;

SUNG KYUN KWAN
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e Find the min/max element
« Search for an element (V)
« Find the successor/predecessor of an element
e Insert an element

e Delete an element
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%

ent found
. If (bst == nil)
found = null;
else
Element root = root(bst);
if (K == root.key)
found = root;
else if (K < root.key)
found = bstSearch (leftSubtree(bst), K);
10. else

© 0N U AW

11. found = bstSearch(rightSubtree(bst), K);

12.return found;

SUNG KYUN KWAN
UNIVERSITY
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e Find the min/max element
« Search for an element

« Find the successor/predecessor of an element (V)
« Insert an element

« Delete an element
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o

- — If x has a nonempty right subtree, then successor(x) is the
smallest element in the tree root at rightSubtree(x)

SUNG KYUN KWAN
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€
i - v

— If rightSubtree(x) is empty, then successor(x) is the
lowest ancestor of x whose left child is also an ancestor
of x.

6 SUNG KYUN KWAN 69 / 82
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BST: advanta

« The advantage to the binary search tree approach is
that it combines the advantage of an array--the ability
to do a binary search with the advantage of a linked
list--its dynamic size.

6SUNG KYUMN KWAN 71/ 82
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e Find the min/max element
« Search for an element

« Find the successor/predecessor of an element
o Insert an element (V)

« Delete an element

6 SUNG KYUN KWAN 72 / 82
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we find a node whose appropriate subtree is empty,
and insert the new node there.

6 SUNG KYUN KWAN 73 / 82
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Insert(T,z) {

SUNG KYUN KWAN
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node y=NIL;
x=T.ro0ot;
while(x!=NIL) {
y=X;
if(z.key<x.key)
x=x->left;
else
x=x->right;
+
z->parent=y;
if (y==NIL)
T.root=z;
else
if(z.key<y.key)
y=>left=z;
else
y—>right=z;

} 74 / 82
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%

e Find the min/max element

« Search for an element

« Find the successor/predecessor of an element
e Insert an element

 Delete an element (V)

SUNG KYUN KWAN
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g a node Zzis by far the most difficult BST
“operation.
e There are three cases to consider
— If zhas no children, just delete it.
— If zhas one child, splice out z That is, link Zs parent and child
— If z has two children, splice out Zs successor y, and replace
the contents of zwith the contents of y
« The last case works because if z has two children, then
its successor has no left child
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BST: spli_c___gﬁ.l_qyts..

//Twe children—-can’t splice out.
if(y=>left!=NIL && y->right!=NIL)
works when a TatuIm;
ode has at most
one child

if(y=>left1=NIL) //Locate child of y
x=y=>Lleft;

else if (y=>right!=NIL)
x=y=>right;

else
x=NIL;

if (x!=NIL) /{If y has child, set parent
I=>parent=y=>parent.;

//Set y?s paremt?s child to y’s child
if (y=>parent==NIL)
=T.root;
else {
if (y==y=->parent=->left)
y=>parent=>left=x;
else
y=>parent=->right=x;
Iy

6 SUNG KYUN KWAN x 78 / 82
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BST: Deletion Algori

s now simple!

Delete(T,z) {

if(z->left==NIL || z->right==NIL)
SpliceOut(T,z);

else {
y=Successor(z) ;
z=>key=y->key;
SpliceQut(T,y);
}
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