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Decrease and Conquer 

1. Reduce a problem instance to a smaller instance of 
the same problem and extend solution 

 

2. Solve the smaller instance 

 

3. Extend solution of smaller instance to obtain solution 
to original problem 

 

• Also referred to as inductive, incremental approach or 
chip and conquer 
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Examples of Decrease & Conquer 

• Decrease by one: 
– Insertion sort 
– Graph search algorithms: 

• DFS 
• BFS 
• Topological sorting 

– Algorithms for generating permutations, subsets  

 

• Decrease by a constant factor 
– Binary search  
– Fake-coin problems 
– multiplication à la russe 
– Josephus problem 

 

• Variable-size decrease 
– Euclid’s algorithm 
– Selection by partition 
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What’s the difference? 

Consider the problem of exponentiation:  

               Compute  an 

 

• Brute Force: 

 

• Divide and conquer: 

 

• Decrease by one: 

 

• Decrease by constant factor: 
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What’s the difference? 

Consider the problem of exponentiation:  

               Compute  an 

 

• Brute Force: an= a*a*a*a*...*a 

 

• Divide and conquer: an= an/2 * an/2  

 

• Decrease by one: an= an-1* a  

 

• Decrease by constant factor: an= (an/2)2  
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GRAPH 
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Graph Traversal 

• Many problems require processing all graph vertices in 
systematic fashion 

• Graph traversal algorithms: 

 

– Depth-first search 

 

– Breadth-first search 

 

• First, some definitions! 
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Graphs 
• A (simple) graph G = (V, E) consists of  

– V, a nonempty set of vertices 

– E, a set of unordered pairs of distinct vertices called edges. 

• Examples: 
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Directed Graphs 
• A directed graph (digraph) G = (V, E) consists of  

– V, a nonempty set of vertices 

– E, a set of ordered pairs of distinct vertices called edges. 

• Examples: 
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Weighted Graph 
• A weighted graph is a triple G = (V, E, W)  

– where (V, E) is a graph (or a digraph) and 

– W is a function from E into R, the reals (integer or 
rationals).  

– For an edge e, W(e) is called the weight of e. 

• A weighted digraph is often called a network. 

• Examples 
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Graph Terminology 
• Let u and v be vertices, and let e = (u,v) be an 

edge in an undirected graph G. 
– The vertices u and v are adjacent. 

– The edge e is incident with both vertices u and v. 

– The edge e connects u and v. 

– The vertices u and v are the endpoints of edge e. 

– The degree of a vertex, denoted deg(v), in an undirected 
graph is the number of edges incident with it (where self-
loops are counted twice). 
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Examples 
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Vertex Degree Examples 
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More Graph Terminology 
• A subgraph of a graph G = (V, E) is a graph  

   G = (V, E) such that V  V and E  E. 

(a simple path) 

 A path is a sequence of vertices v1, v2, v3, …, vk such that 
consecutive vertices vi and vi+1 are adjacent.  
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Graph Representations using 
Data Structures 

• Adjacency Matrix Representation 
– Let G = (V, E), n = |V|, m = |E|, V = {v1, v2, …, vn) 

– G can be represented by an n  n matrix C 
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Adjacency Matrix for weight digraph 
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Adjacency List Representation 
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Weighted Digraph Adjacency List Representation 
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More Definitions 
• Subgraph 
• Symmetric digraph 
• Complete graph 
• Adjacency relation 
• Path, simple path, reachable 
• Connected, Strongly Connected 
• Cycle, simple cycle 
• Acyclic 
• Undirected forest  
• Free tree, undirected tree 
• Rooted tree 
• Connected component 
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Traversing Graphs 
• Most algorithms for solving problems on a 

graph examine or process each vertex and each 
edge. 

• Depth-First Search (DFS) and Breadth-First 
Search (BFS) 
– Two elementary traversal strategies that provide an 

efficient way to “visit” each vertex and edge exactly once. 

– Both work on directed or undirected graphs. 

– Many advanced graph algorithms are based on the 
concepts of DFS or BFS. 

– The difference between the two algorithms is in the order 
in which each “visits” vertices. 
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DECREASE BY ONE 
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Depth-first search 
• Explore graph always moving away from last visited 

vertex 

• Pseudocode for Depth-first-search of graph G=(V,E) 

 

dfs(v) 

count := count + 1 

mark v with count 

for each vertex w adjacent to v do 

if w is marked with 0  

dfs(w) 

DFS(G) 

count :=0 

mark each vertex with 0 (unvisited) 

for each vertex v V do 

if v is marked with 0  

dfs(v) 
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Example – undirected graph 

• Depth-first traversal: 

a b 

e f 

c d 

g h 

dfs(v) 

count := count + 1 

mark v with count 

for each vertex w adjacent 
to v do 

if w is marked with 0  

dfs(w) 
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DFS stack and forest 
a b 

e f 

c d 

g h 

a 

b 

e 

f 
c 

d 

g 
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Types of edges 

• Tree edges: edges comprising forest 

 

• Back edges: edges to ancestor nodes 
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Question 

• How to rewrite the procedure dfs(v), using a stack to 
eliminate recursion 

dfs(v) 

count := count + 1 

mark v with count 

for each vertex w adjacent to v do 

if w is marked with 0  

dfs(w) 
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Non-recursive version of DFS algorithm 

Algorithm dfs(v) 

s.createStack(); 
s.push(v); 
count := count + 1 
mark v with count 
while (!s.isEmpty()) { 
 let x be the node on the top of the stack s; 
 if (no unvisited nodes are adjacent to x) 
  s.pop(); // backtrack 
 else { 
  select an unvisited node u adjacent to x; 
  s.push(u); 
  count := count + 1 
  mark u with count 
 } 
} 
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DFS stack and forest 

a1,8 b2,7 f3,2 e4,1  

             g5,6 c6,5 d7,4 h8,3 

 

preorder: a b f e g c d h 

postorder: e f h d c g b a 

a b 

e f 

c d 

g h 

a 

b 

e 

f 
c 

d 

g 
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Depth-first search: Notes 

• Yields two distinct ordering of vertices: 
– preorder: as vertices are first encountered (pushed onto stack) 

– postorder: as vertices become dead-ends (popped off stack) 

 

• Applications: 
– checking connectivity, finding connected components 

– checking acyclicity 

– searching state-space of problems for solution (AI) 
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In-class Exercise 
• Consider the graph 

 

 

 

 

 

a. Write down the adjacency matrix and adjacency lists specifying this 

graph. (Assume that the matrix rows and columns and vertices in the 

adjacency lists follow in the alphabetical order of the vertex labels.) 

 

b. Starting at vertex A and resolving ties by the vertex alphabetical order, 

traverse the graph by depth-first search and construct the corresponding 

depth-first search tree. Give the order in which the vertices were reached 

for the first time (pushed onto the traversal stack) and the order in which 

the vertices became dead ends (popped off the stack). 
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Maze traversal 
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Maze and graph representing it (I) 
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Maze and graph representing it (II) 
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Breadth-first search 

• Explore graph moving across to all the neighbors of 
last visited vertex 

 

• Similar to level-by-level tree traversals  

 

• Instead of a stack, breadth-first uses queue 

 

• Applications: same as DFS, but can also find paths 
from a vertex to all other vertices with the smallest 
number of edges 

35 / 82 

http://www.skku.edu/new_home/eng/


Example – undirected graph 

• Breadth-first traversal: 

a b 

e f 

c d 

g h 
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BFS queue and forest 

• a b e f g c h d 

a b 

e f 

c d 

g h 

a 

b e f 

c 

d 

g 

h 
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Breadth-first search algorithm 
bfs(v) 

count := count + 1 

mark v with count 

initialize queue with v 

while queue is not empty do 

a := front of queue 

for each vertex w adjacent to a do 

if w is marked with 0  

count := count + 1 

mark w with count 

add w to the end of the queue 

remove a from the front of the queue 

BFS(G) 
count :=0 
mark each vertex with 0 

for each vertex v V do 
if v is marked with 0  

bfs(v) 
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Directed acyclic graphs 
• A directed acyclic graph or DAG is a directed graph 

with no directed cycles: 

a b 

c d 

not a dag 

a dag 
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Directed acyclic graphs (DAG) 

 

• Arise in many modeling problems, e.g.: 

– course prerequisite structure 

– food chains 

 

• Imply partial ordering on the domain 
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Topological Sort 

• Topological sort of a DAG: 
– Linear ordering of all vertices in graph G  

   such that for every edge (u, v)  G, the 
vertex, u, where the edge starts is listed 
before the vertex, v, where the edge ends. 

 

cs101 

cs203 

math101 

cs310 

cs401 

cs825 

cs525 

cs990 
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Topological Sort 
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Topological Sorting Example 

• Order the following items in a food chain 

 

fish 

human 

shrimp 

sheep 

wheat plankton 

tiger 
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Topological sorting Algorithms 

1. DFS-based algorithm: 
– DFS traversal noting order vertices are popped off stack 

– Reverse order solves topological sorting 

– Back edges encountered?→ NOT a dag! 

 

2. Source removal algorithm 
– Repeatedly identify and remove a source vertex, ie, a vertex 

that has no incoming edges 
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Question 

• How would you find a source (or determine that such 
a vertex does not exist) in a digraph 

 

– represented by adjacency matrix? 

 

– represented by adjacency linked list? 
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DECREASE BY  
A CONSTANT FACTOR 
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Decrease by a constant factor 
- Examples 

• Fake-coin problem 

 

• Multiplication à la russe (Russian peasant method) 

 

• Josephus problem 
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Fake-Coin Puzzle (simpler version) 

There are n identically looking coins one of which is fake.  
There is a balance scale but there are no weights; the 
scale can tell whether two sets of coins weigh the same 
and, if not, which of the two sets is heavier (but not by 
how much).  Design an efficient algorithm for detecting 
the fake coin.  Assume that the fake coin is known to be 
lighter than the genuine ones. 

 

Decrease by factor 2 algorithm 

 

Decrease by factor 3 algorithm  
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Russian peasant method 

• n*m 

• If n is even, n*m = (n/2)*(2m) 

• If n is odd, n*m = ((n-1)/2)*(2m)+m 

• Repeat the above process until we have the trivial case 
of 1*x = x 

 

• Only simple operations: halving, doubling, and adding, 
no need to memorize the table of multiplications 
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Russian peasant method - 
Example 

•  Compute 50 * 65 
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Josephus problem 

• Josephus Flavius Game 
– Josephus Flavius was a famous Jewish historian of the first 

century at the time of the Second Temple destruction. During 
the Jewish-Roman war he got trapped in a cave with a group 
of 40 soldiers surrounded by romans. The legend has it that 
preferring suicide to capture, the Jews decided to form a circle 
and, proceeding around it, to kill every third remaining person 
until no one was left. Josephus, not keen to die, quickly found 
the safe spot in the circle and thus stayed alive. 
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DECREASE BY  
A VARIABLE SIZE 
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Decrease by a variable size 
- Examples 

• Euclid’s algorithm for greatest common divisor  

 

• Selection problem 

 

• Binary search tree 

 

53 / 82 

http://www.skku.edu/new_home/eng/


Euclid’s algorithm for greatest common divisor 

• 50 : 1, 2, 5, 10, 25, 50 

    20 : 1, 2, 4, 5, 10, 20 

• GCD(x, y) = GCD(x-y, y) 

    GCD(x,y) = GCD(y,x) 

    Ex) GCD(50,20) = GCD(30,20) = GCD(10,20) =  GCD(20,10) = 

GCD(10,10) = GCD(0,10) = GCD(10,0) 

• GCD(X,Y) = GCD(X%Y, Y)  

    Ex) GCD(50,20) = GCD(10,20) = GCD (20,10) =  GCD(0,10)  
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Euclid’s algorithm for  
greatest common divisor 

• Steps for 2 natural numbers n and m 
 

– E1 : r ← m mod n;   

– E2 : if ( r = 0 ) then return; 

– E3 : m  ← n;  n ← r;  
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The selection problem 
• Input: A set S of n elements 

 

• Output: The kth smallest element of S 

 

•                        To find the median (the middle value) 

 

•                        To find the smallest element 

 

•                        To find the largest element 

K =   1 

K =  n 

K =  








2

n
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The selection problem 

• Input: A set S of n elements 

 

• Output: The kth smallest element of S 

 

• The straightforward algorithm:  
 

– step 1: Sort the n elements 

 

– step 2: Locate the kth element in the sorted list. 

 
 This algorithm is overkill! 

57 / 82 

http://www.skku.edu/new_home/eng/


Search problem 
• Search a key in a sorted list 

– Sequential search 

– Binary search 

 

• How do you search for a name in a telephone book?  

 
– Using binary search  
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Binary Search Trees (BSTs) 

• Binary Search Tree property 
– A binary tree in which the key of an internal node is greater 

than the keys in its left subtree and less than or equal to the 
keys in its right subtree.  

 

• An inorder traversal of a binary search tree produces a 
sorted list of keys. 
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Variable-size-decrease: Binary search trees 

• Keys are arranged in a binary tree with the binary 
search tree property: 

k 

<k k 
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BST Examples 
• Binary Search trees with different degrees of balance 

• Black dots denote empty trees 

 

 

 

 

 

 

 

 

• Size of a search tree 
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Variable-size-decrease: Binary search trees 

• Arrange keys in a binary tree with the binary search 
tree property: 

k 

<k  k 

Example 1: 5, 10, 3, 1, 7, 12, 9 
 
Example 2: 4, 5, 7, 2, 1, 3, 6 
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BST Operations 

• Find the min/max element () 

• Search for an element 

• Find the successor/predecessor of an element 

• Insert an element 

• Delete an element 
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BST: Min/Max 
• The minimum element is the left-most node 

x is a non-empty BST 

 The maximum element is the right-most node 
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BST Operations 

• Find the min/max element 

• Search for an element () 

• Find the successor/predecessor of an element 

• Insert an element 

• Delete an element 
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BST Search (Retrieval) 
Element bstSearch(BinTree bst, Key K) 

1. Element found 

2. if (bst == nil) 

3.     found = null; 

4. else 

5.    Element root = root(bst); 

6.    if (K == root.key) 

7.        found = root; 

8.    else if (K < root.key) 

9.        found = bstSearch (leftSubtree(bst), K); 

10.     else  

11.         found = bstSearch(rightSubtree(bst), K); 

12. return found; 
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BST Operations 

• Find the min/max element 

• Search for an element 

• Find the successor/predecessor of an element () 

• Insert an element 

• Delete an element 
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BST: Successor/Predecessor 

• Finding the successor of a node x (if it exists): 
– If x has a nonempty right subtree, then successor(x) is the 

smallest element in the tree root at rightSubtree(x) 
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BST: Successor/Predecessor 

• Finding the successor of a node x (if it exists): 

– If rightSubtree(x) is empty, then successor(x) is the 
lowest ancestor of x whose left child is also an ancestor 
of x. 
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Why binary search tree? 

Array: 1 3 4 5 7 8 9 10 13 17 21 23 

BST: 
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BST: advantage 

• The advantage to the binary search tree approach is 
that it combines the advantage of an array--the ability 
to do a binary search with the advantage of a linked 
list--its dynamic size.  
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BST Operations 

• Find the min/max element 

• Search for an element 

• Find the successor/predecessor of an element 

• Insert an element () 

• Delete an element 
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BST: Insertion 

• To insert a node into a BST, we search the tree until 
we find a node whose appropriate subtree is empty, 
and insert the new node there. 
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BST: Insertion 

• Sample code for Insert  
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BST Operations 

• Find the min/max element 

• Search for an element 

• Find the successor/predecessor of an element 

• Insert an element 

• Delete an element () 
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BST: Delete 

• Deleting a node z is by far the most difficult BST 
operation. 

• There are three cases to consider 
– If z has no children, just delete it. 

– If z has one child, splice out z, That is, link z’s parent and child 

– If z has two children, splice out z’s successor y, and replace 
the contents of z with the contents of y 

• The last case works because if z has two children, then 
its successor has no left child 
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BST: splice out examples 

77 / 82 

http://www.skku.edu/new_home/eng/


BST: splice out algorithm 

Only works when a 

node has at most 

one child 
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BST: Deletion Algorithm 

• Delete is now simple! 

 

79 / 82 

http://www.skku.edu/new_home/eng/


BST: delete examples 
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BST: one more delete example 
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Q & A 
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