Divide and Conquer

Algorithm
2014 Fall Semester

Divide-and-Conquer

The most-well known algorithm design strategy:

1. Divide instance of problem into two or more smaller instances
2. Solve smaller instances recursively
3. Obtain solution to original (larger) instance by combining these solutions

Divide-and-Conquer

a problem of size n
a solution to the original problem

Divide-and-Conquer Example

- Sorting: merge sort and quick sort
- Binary search
- Multiplication of large integers
- Matrix multiplication: Strassen's algorithm
- Closest-pair algorithms

Mergesort

- Split array $\mathrm{A}[0 . . n-1]$ in two about equal halves and make copies of each half in arrays B and C
- Sort arrays B and C recursively
- Merge sorted arrays B and C into array A as follows:
- Repeat the following until no elements remain in one of the arrays:
- compare the first elements in the remaining unprocessed portions of the arrays
- copy the smaller of the two into A, while incrementing the index indicating the unprocessed portion of that array
- Once all elements in one of the arrays are processed, copy the remaining unprocessed elements from the other array into A .

Quicksort

- Select a pivot (partitioning element) - here, the first element
- Rearrange the list so that all the elements in the first s positions are smaller than or equal to the pivot and all the elements in the remaining n-s positions are larger than or equal to the pivot (see next slide for an example)

- Exchange the pivot with the last element in the first (i.e., \leq) subarray - the pivot is now in its final position
- Sort the two subarrays recursively

Quicksort Example

1. $5-3-7-6-2-1-4$
p
2. 5-3-7-6-2-1-4
i

3. 1-3-7-6-2-5-4
j p
4. 1-3-7-6-2-5-4 i j
p
5. 1-3-7-6-2-5-4
i
6. 1-3-2-6-7-5-4
7. 1-3-2-6-7-5-4
8. 1-3-2-4-7-5-6
p
Sort sub-list: 1-3-2

$$
1-2-3
$$

Final Result :

$$
1-2-3-4-5-6-7
$$

In-Class Exercise

- Quicksort

$\begin{array}{llllllllll}24 & 32 & 11 & 15 & 62 & 3 & 9 & 13 & 22 & 5\end{array} 10$

Binary Search

Very efficient algorithm for searching in sorted array:
K
VS

$$
\mathrm{A}[0] \ldots \mathrm{A}[m] \ldots \mathrm{A}[n-1]
$$

If $K=\mathrm{A}[m]$, stop (successful search); otherwise, continue searching by the same method in $\mathrm{A}[0 . . m-1]$ if $K<\mathrm{A}[m]$ and in $\mathrm{A}[m+1 . . n-1]$ if $K>\mathrm{A}[m]$
$l \leftarrow 0 ; r \leftarrow n-1$
while $l \leq r$ do
$m \leftarrow\lfloor(l+r) / 2\rfloor$
if $K=\mathbf{A}[m]$ return m
else if $K<A[m] r \leftarrow \boldsymbol{m}-1$
else $l \leftarrow \boldsymbol{m}+1$
CSureturn-1

Binary Search Example

Sorted list :

$$
\begin{array}{llllllllllllll}
1 & 7 & 14 & 17 & 26 & 59 & 63 & 77 & 79 & 87 & 88 & 90 & 92 & 96 \\
98 & 99
\end{array}
$$

Key value : 63

Step 1) $M=(0+15)$ div 2

$$
A[7]=77
$$

Step 2) Is the number greater than 77 ? (No)

$$
\begin{aligned}
& M=(0+6) \operatorname{div} 2 \\
& A[3]=17
\end{aligned}
$$

Step 3) Is the number greater than 17 ? (Yes)

Multiplication of Large Integers

Consider the problem of multiplying two (large) n-digit integers represented by arrays of their digits such as:
$\mathrm{A}=12525678901357986429$
$B=87654321284820912836$

Divide \& Conquer Algorithm

A small example: $\mathrm{A} * \mathrm{~B}$ where $\mathrm{A}=2135$ and $\mathrm{B}=4014$
$A=\left(21 \cdot 10^{2}+35\right), \quad B=\left(40 \cdot 10^{2}+14\right)$
So, $A * B=\left(21 \cdot 10^{2}+35\right) *\left(40 \cdot 10^{2}+14\right)$

$$
=21 * 40 \cdot 10^{4}+
$$

$$
(21 * 14+35 * 40) \cdot 10^{2}+
$$

$$
35 * 14
$$

In general, if $A=A_{1} A_{2}$ and $B=B_{1} B_{2}$
(where A and B are n-digit, $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{2}$ are $n / 2$-digit numbers),
$A * B=A_{1} * B_{1} \cdot 10^{n}+\left(A_{1} * B_{2}+A_{2} * B_{1}\right) \cdot 10^{n / 2}+A_{2} * B_{2}$

Divide \& Conquer Algorithm

Let $P_{1}=\left(I_{h}+I_{1}\right) \times\left(J_{h}+J_{1}\right)=I_{h} \times J_{h}+I_{h} \mathbf{x} \mathbf{J}_{1}+I_{1} \times \mathbf{J}_{h}+I_{1} \mathbf{x} \mathbf{J}_{1}$

$$
\begin{aligned}
& \mathbf{P}_{2}=I_{h} \times J_{h}, \text { and } \\
& P_{3}=I_{1} \times J_{1}
\end{aligned}
$$

Now, note that

$$
\begin{aligned}
\mathbf{P}_{1}-\mathbf{P}_{2}-\mathbf{P}_{3} & =\mathbf{I}_{\mathbf{h}} \mathbf{x} \mathbf{J}_{\mathbf{h}}+\mathbf{I}_{\mathrm{h}} \mathbf{x} \mathbf{J}_{1}+\mathbf{I}_{1} \mathbf{x} \mathbf{J}_{h}+\mathbf{I}_{1} \mathbf{x} \mathbf{J}_{1}-\mathbf{I}_{h} \mathbf{x} \mathbf{J}_{h}-\mathbf{I}_{1} \mathbf{x} \mathbf{J}_{1} \\
& =\mathbf{I}_{h} \mathbf{x} \mathbf{J}_{1}+\mathbf{I}_{1} \mathbf{x} \mathbf{J}_{h}
\end{aligned}
$$

Then we have the following:
$I \times J=P_{2} \times 2^{n}+\left[P_{1}-P_{2}-P_{3}\right] \times 2^{n / 2}+P_{3}$.

Divide \& Conquer exercise

- Multiplication of Large Integers

11010011 * 01011001

Let I = 11010011, which is 211 in decimal Let $\mathrm{J}=01011001$, which is 89 in decimal.
Then we have $I_{h}=1101$, which is 13 in decimal, and
$I_{1}=0011$, which is 3 in decimal
Also we have $J_{h}=0101$, which is 5 in decimal, and
$J_{I}=1001$, which is 9 in decimal

1) Compute $I_{h}+I_{l}=10000$, which is 16 in decimal
2) Compute $J_{h}+J_{I}=1110$, which is 14 in decimal
3) Recursively multiply $\left(I_{h}+I_{l}\right) \times\left(J_{h}+J_{l}\right)$, giving us 11100000, which is 224 in decimal. (This is P_{1}.)
4) Recursively mutliply $I_{h} \times J_{h}$, giving us 01000001, which is 65 in decimal. (This is P_{2}.)
5) Recursively multiply $I_{1} \times J_{1}$, giving us 00011011, which is 27 in decimal. (This is P_{3}.)
6) Compute $P_{1}-P_{2}-P_{3}$ using 2 subtractions to yield 10000100, which is 132 in decimal
7) Now compute the product as $01000001 \times 100000000+$

$$
\begin{aligned}
& \text { 10000100x } 00010000+ \\
& 00011011= \\
& 0100000100000000\left(P_{2} \times 2^{8}\right) \\
& 100001000000\left(\left(P_{1}-P_{2}-P_{3}\right) \times 2^{4}\right) \\
& +\quad 00011011\left(P_{3}\right)
\end{aligned}
$$

Strassen's Matrix Multiplication

Strassen observed [1969] that the product of two matrices can be computed as follows:
$\left(\begin{array}{c|c}C_{00} & C_{01} \\ \hline C_{10} & C_{11}\end{array}\right)=\left(\begin{array}{c|c}A_{00} & A_{01} \\ \hline A_{10} & A_{11}\end{array}\right) *\left(\begin{array}{c|c}B_{00} & B_{01} \\ \hline B_{10} & B_{11}\end{array}\right)$
$\begin{aligned} & \mathbf{C}_{\mathbf{0 0}}=\mathbf{A}_{\mathbf{0 0}} \mathbf{B}_{\mathbf{0 0}}+\mathbf{A}_{\mathbf{0 1}} \mathbf{B}_{\mathbf{1 0}} \\ & \mathbf{C}_{\mathbf{0 1}}=\mathbf{A}_{\mathbf{0 0}} \mathbf{B}_{\mathbf{0 1}}+\mathbf{A}_{\mathbf{0 1}} \mathbf{B}_{\mathbf{1 1}}\end{aligned}=\left(\begin{array}{ll}M_{1}+M_{4}-M_{5}+M_{7} & M_{3}+M_{5} \\ M_{2}+M_{4} & M_{1}+M_{3}-M_{2}+M_{6}\end{array}\right)$
$C_{10}=A_{10} B_{00}+A_{11} B_{10}$
$C_{11}=A_{10} B_{01}+A_{11} B_{11}$
2×2 matrix multiplication can be accomplished in 8 multiplication. $\left(\mathbf{2}^{\boldsymbol{\operatorname { l o g }}_{\mathbf{2}} \mathbf{8}}=\mathbf{2}^{\mathbf{3}}\right)$

Basic Matrix Multiplication

- Algorithm

$$
\begin{aligned}
& \text { void matrix_mult }() \\
& \left\{\begin{array}{l}
\text { for }(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{N} ; \mathrm{i}++) \\
\quad \text { for }(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{N} ; \mathrm{j}++) \\
\text { compute } \mathrm{C}_{\mathrm{i}, \mathrm{j}} ;
\end{array}\right. \\
& \}
\end{aligned}
$$

- Time analysis

$$
\begin{aligned}
& C_{i, j}=\sum_{k=1}^{N} a_{i, k} b_{k, j} \\
& \operatorname{Thus} T(N)=\sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} c=c N^{3}=O\left(N^{3}\right)
\end{aligned}
$$

Strassens's Matrix

Multiplication

- Strassen showed that 2×2 matrix multiplication can be accomplished in 7 multiplication and 18 additions or subtractions.
- $\left(2^{\log _{2} 7}=2^{2.807}\right)$
- This reduce can be done by Divide and Conquer Approach.

Formulas for Strassen's Algorithm

$$
\begin{aligned}
& M_{1}=\left(A_{00}+A_{11}\right) *\left(B_{00}+B_{11}\right) \\
& M_{2}=\left(A_{10}+A_{11}\right) * B_{00}
\end{aligned}
$$

$$
M_{3}=A_{00} *\left(B_{01}-B_{11}\right)
$$

$$
M_{4}=A_{11} *\left(B_{10}-B_{00}\right)
$$

$$
\begin{aligned}
& \mathbf{C}_{\mathbf{0 0}}=M_{1}+M_{4}-M_{5}+M_{7} \\
& \mathbf{C}_{\mathbf{0 1}}=M_{3}+M_{5} \\
& \mathbf{C}_{\mathbf{1 0}}=M_{2}+M_{4} \\
& \mathbf{C}_{\mathbf{1 1}}=M_{1}+M_{3}-M_{2}+M_{6}
\end{aligned}
$$

$$
M_{5}=\left(A_{00}+A_{01}\right) * B_{11}
$$

$$
M_{6}=\left(A_{10}-A_{00}\right) *\left(B_{00}+B_{01}\right)
$$

$$
M_{7}=\left(A_{01}-A_{11}\right) *\left(B_{10}+B_{11}\right)
$$

Closest-Pair Problem:

Divide and Conouer

- Brute force approach requires comparing every point with every other point
- Given n points, we must perform $1+2+3+\cdots+n-2+$ n-1 comparisons.

$$
\sum_{k=1}^{n-1} k=\frac{(n-1) \cdot n}{2}
$$

- Brute force $\rightarrow \mathrm{O}\left(\mathrm{n}^{2}\right)$
- The Divide and Conquer algorithm yields $\rightarrow \mathrm{O}(\mathrm{n} \log \mathrm{n})$
- Reminder: if $\mathrm{n}=1,000,000$ then

$$
\begin{array}{lr}
\cdot \mathrm{n}^{2}= & 1,000,000,000,000 \\
\text { • } \mathrm{n} \log \mathrm{n}= & 20,000,000
\end{array}
$$

Closest-Pair Algorithm

Given: A set of points in 2-D

Closest-Pair Algorithm

Step 1: Sort the points in one D

Closest-Pair Algorithm

Lets sort based on the X-axis

$\mathrm{O}(\mathrm{n} \log \mathrm{n})$ using quicksort or mergesort

Closest-Pair Algorithm

Step 2: Split the points, i.e., Draw a line at the mid-point between 7 and 8

Closest-Pair Algorithm

 Advantage: Normally, we'd have to compare each of the 14 points with every other point.$$
(n-1) n / 2=13 * 14 / 2=91 \text { comparisons }
$$

Closest-Pair Algorithm

 Advantage: Now, we have two sub-problems of half the size. Thus, we have to do $6 * 7 / 2$ comparisons twice, which is 42 comparisons

Closest-Pair Algorithm

 Advantage: With just one split we cut the number of comparisons in half. Obviously, we gain an even greater advantage if we split the sub-problems.

Closest-Pair Algorithm

 Problem: However, what if the closest twopoints are each from different sub-problems?

Closest-Pair Algorithm

 Here is an example where we have to compare noirits from sub-problem 1 to the points in subproblem 2.

Closest-Pair Algorithm

 However, we only have to compare points inside the following "strip."

Closest-Pair Algorithm

 Step 3: But, we can continue the advantage by splitting the sub-problems.

Closest-Pair Aloorithm

Step 3: In fact we can continue to split until each sub-problem is trivial, i.e., takes one comparison.

Closest-Pair Algorithm

 Finally: The solution to each sub-problem is combined until the final solution is obtained

Closest-Pair Algorithm

Finally: On the last step the 'strip' will likely be very small. Thus, combining the two largest subproblems won't require much work.

Closest-Pair Algorithm

- In this example, it takes 22 comparisons to find the closets-pair.
- The brute force algorithm would have taken 91 comparisons.
- But, the real advantage occurs when there are millions of points.

Closest Pair by Divide \& Conquer

- Divide:
- Sort halves by x-coordinate.
- Find vertical line splitting points in half.
- Conquer:
- Recursively find closest pairs in each half.
- Combine:
- Check vertices near the border to see if any pair straddling the border is closer together than the minimum seen so far.

Closest Pair by Divide \& Conquer

Step 1 Divide the points given into two subsets S_{1} and S_{2} by a vertical line $x=c$ so that half the points lie to the left or on the line and half the points lie to the right or on the line.

Step 2 Find recursively the closest pairs for the left and right subsets.
Step 3 Set $d=\min \left\{d_{1}, d_{2}\right\}$
We can limit our attention to the points in the symmetric vertical strip of width $2 d$ as possible closest pair. Let C_{1} and C_{2} be the subsets of points in the left subset S_{1} and of the right subset S_{2}, respectively, that lie in this vertical strip. The points in C_{1} and C_{2} are stored in increasing order of their y coordinates, which is maintained by merging during the execution of the next step.

Step 4 For every point $P(x, y)$ in C_{1}, we inspect points in C_{2} that may be closer to P than d. There can be no more than 6 such points (because $d \leq d_{2}$).

Closest Pair by Divide \& Conquer: Worst

Case

The worst case scenario is depicted below:

Closest Pair by Divide \& Conquer: Algorithm -

- Divide: draw vertical line L so that roughly $1 / 2 n$ points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side.
- Return best of 3 solutions.

Convex hull (definition)

- H is the smallest convex polygon that contains all the points of Q

Convex hull (principle)

- Decompose the set of points in equal parts (Qleft and Qright)
- Solve the sub-problems respectively on Qleft and Qright
- Merge both convex hulls Hleft and Hright

Convex hull Algorithm

Step 1 : Decomposition

Sort the points

Convex hull Algorithm

Step 2 : Decomposition - Split part

Convex hull Algorithm

Step 3 : Solve Sub-Problems

Convex hull Algorithm

Step 4 : Merge Both Solutions

Convex hull Algorithm

Step 4 : Merge Both Solutions

Convex hull Algorithm

Step 4 : Merge Both Solutions

Convex hull Algorithm

Step 4 : Merge Both Solutions

Determine

 the upper tangent
Convex hull Algorithm

Step 4 : Merge Both Solutions

Determine the upper tangent

Convex hull Algorithm

Step 4 : Merge Both Solutions

Determine the lower tangent

Q \& A

SUNGKYUNKWAN
UNIVERSITY

