
Algorithm
2014 Fall Semester

Divide and Conquer

http://www.skku.edu/new_home/eng/

Divide-and-Conquer

The most-well known algorithm design strategy:

1. Divide instance of problem into two or more smaller
instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance by
combining these solutions

2 / 52

http://www.skku.edu/new_home/eng/

Divide-and-Conquer

subproblem 2
of size n/2

subproblem 1
of size n/2

a solution to
subproblem 1

a solution to
the original problem

a solution to
subproblem 2

a problem of size n

3 / 52

http://www.skku.edu/new_home/eng/

Divide-and-Conquer Examples

• Sorting: merge sort and quick sort

• Binary search

• Multiplication of large integers

• Matrix multiplication: Strassen’s algorithm

• Closest-pair algorithms

• Convex-hull algorithms

4 / 52

http://www.skku.edu/new_home/eng/

Mergesort

• Split array A[0..n-1] in two about equal halves and make
copies of each half in arrays B and C

• Sort arrays B and C recursively
• Merge sorted arrays B and C into array A as follows:

– Repeat the following until no elements remain in one of
the arrays:
• compare the first elements in the remaining

unprocessed portions of the arrays
• copy the smaller of the two into A, while

incrementing the index indicating the unprocessed
portion of that array

– Once all elements in one of the arrays are processed,
copy the remaining unprocessed elements from the
other array into A.

5 / 52

http://www.skku.edu/new_home/eng/

Mergesort Example
8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9 6 / 52

http://www.skku.edu/new_home/eng/

Quicksort

• Select a pivot (partitioning element) – here, the first
element

• Rearrange the list so that all the elements in the first s
positions are smaller than or equal to the pivot and all the
elements in the remaining n-s positions are larger than or
equal to the pivot (see next slide for an example)

• Exchange the pivot with the last element in the first (i.e., )
subarray — the pivot is now in its final position

• Sort the two subarrays recursively

p

A[i]p A[i]p

7 / 52

http://www.skku.edu/new_home/eng/

Quicksort Example

1. 5 - 3 - 7 - 6 - 2 - 1 - 4

 p

2. 5 - 3 - 7 - 6 - 2 - 1 - 4

 i j p

3. 1 - 3 - 7 - 6 - 2 - 5 - 4

 i j p

4. 1 - 3 - 7 - 6 - 2 - 5 - 4

 i j p

5. 1 - 3 - 7 - 6 - 2 - 5 - 4

 i j p

6. 1 - 3 - 2 - 6 - 7 - 5 - 4

 i j p

7. 1 - 3 - 2 - 6 - 7 - 5 - 4

 p

8. 1 - 3 - 2 - 4 - 7 - 5 - 6

 p

Sort sub-list : 1 - 3 - 2

 1 - 2 - 3

Final Result :

 1 - 2 - 3 - 4 - 5 - 6 - 7

8 / 52

http://www.skku.edu/new_home/eng/

In-Class Exercise

• Quicksort

 24 32 11 15 62 3 9 13 22 5 10

9 / 52

http://www.skku.edu/new_home/eng/

Binary Search
Very efficient algorithm for searching in sorted array:
 K
 vs
 A[0] . . . A[m] . . . A[n-1]
If K = A[m], stop (successful search); otherwise, continue
searching by the same method in A[0..m-1] if K < A[m]
and in A[m+1..n-1] if K > A[m]

l  0; r  n-1

while l  r do

 m  (l+r)/2

 if K = A[m] return m

 else if K < A[m] r  m-1

 else l  m+1

return -1 10 / 52

http://www.skku.edu/new_home/eng/

Binary Search Example
Sorted list :

1 7 14 17 26 59 63 77 79 87 88 90 92 96 98 99

Key value : 63

Step 1) M=(0+15) div 2

 A[7] = 77

Step 2) Is the number greater than 77? (No)

 M=(0+6) div 2

 A[3] = 17

Step 3) Is the number greater than 17? (Yes)

 …..

 11 / 52

http://www.skku.edu/new_home/eng/

Multiplication of Large Integers

Consider the problem of

multiplying two (large) n-digit integers

represented by arrays of their digits such as:

A = 12525678901357986429

B = 87654321284820912836

12 / 52

http://www.skku.edu/new_home/eng/

Divide & Conquer Algorithm

A small example: A  B where A = 2135 and B = 4014

A = (21·102 + 35), B = (40 ·102 + 14)

So, A  B = (21 ·102 + 35)  (40 ·102 + 14)

 = 21  40 ·104 +

 (21  14 + 35  40) ·102 +

 35  14

In general, if A = A1A2 and B = B1B2

(where A and B are n-digit, A1, A2, B1, B2 are n/2-digit
numbers),

A  B = A1  B1·10n + (A1  B2 + A2  B1) ·10n/2 + A2  B2

13 / 52

http://www.skku.edu/new_home/eng/

Divide & Conquer Algorithm

Let P1 = (Ih + Il) x (Jh + Jl) = IhxJh + Ihx Jl + IlxJh + IlxJl

 P2 = Ih x Jh , and

 P3 = Il x Jl

Now, note that

P1 - P2 – P3 = IhxJh + IhxJl + IlxJh + IlxJl - IhxJh - IlxJl

 = IhxJl + IlxJh

Then we have the following:

I x J = P2 x 2n + [P1 - P2 – P3]x 2n/2 + P3.

14 / 52

http://www.skku.edu/new_home/eng/

Divide & Conquer exercise

• Multiplication of Large Integers

 11010011 * 01011001

15 / 52

http://www.skku.edu/new_home/eng/

Let I = 11010011, which is 211 in decimal

Let J = 01011001, which is 89 in decimal.

Then we have Ih = 1101, which is 13 in decimal, and

 Il = 0011, which is 3 in decimal

Also we have Jh = 0101, which is 5 in decimal, and

 Jl = 1001, which is 9 in decimal

1) Compute Ih + Il = 10000, which is 16 in decimal

2) Compute Jh + Jl = 1110, which is 14 in decimal

3) Recursively multiply (Ih + Il) x (Jh + Jl), giving us 11100000,

 which is 224 in decimal. (This is P1.)

4) Recursively mutliply Ih x Jh , giving us 01000001,

 which is 65 in decimal. (This is P2.)

5) Recursively multiply Il x Jl, giving us 00011011,

 which is 27 in decimal. (This is P3.)

6) Compute P1 - P2 – P3 using 2 subtractions to yield 10000100,

 which is 132 in decimal

7) Now compute the product as 01000001x100000000 +

 10000100x 00010000 +

 00011011 =

 0100000100000000 (P2x28)

 100001000000 ((P1- P2- P3) x24)

 + 00011011 (P3)

 0100100101011011, which is 18779 in decimal, the correct answer.

 (This is also 65x28+132 x24+27.)

16 / 52

http://www.skku.edu/new_home/eng/

Strassen’s Matrix Multiplication

 Strassen observed [1969] that the product of two
matrices can be computed as follows:

C00 C01 A00 A01 B00 B01

 = *

C10 C11 A10 A11 B10 B11

 M1 + M4 - M5 + M7 M3 + M5

 =

 M2 + M4 M1 + M3 - M2 + M6

C00 = A 00 B 00 + A 01 B 10

C01 = A 00 B 01 +A 01 B 11

C10 = A 10 B 00 + A 11 B 10

C11 = A 10 B 01 + A 11 B 11

2x2 matrix multiplication can be

accomplished in 8 multiplication.(2log
2
8 =23)

17 / 52

http://www.skku.edu/new_home/eng/

Basic Matrix Multiplication

• Algorithm

• Time analysis

void matrix_mult ()

{

 for (i = 1; i <= N; i++)

 for (j = 1; j <= N; j++)

 compute Ci,j;

 }

)()(Thus 3

1 1

3

1

,
1

,,

NOcNcNT

baC

N

i

N

j

N

k

jk

N

k
kiji









  



18 / 52

http://www.skku.edu/new_home/eng/

Strassens’s Matrix
Multiplication

• Strassen showed that 2x2 matrix multiplication can be
accomplished in 7 multiplication and 18 additions or
subtractions.

• (2log
2
7 =22.807)

• This reduce can be done by Divide and Conquer
Approach.

19 / 52

http://www.skku.edu/new_home/eng/

Formulas for Strassen’s Algorithm

M1 = (A00 + A11)  (B00 + B11)

M2 = (A10 + A11)  B00

M3 = A00  (B01 - B11)

M4 = A11  (B10 - B00)

M5 = (A00 + A01)  B11

M6 = (A10 - A00)  (B00 + B01)

M7 = (A01 - A11)  (B10 + B11)

C00 = M1 + M4 - M5 + M7

C01 = M3 + M5

C10 = M2 + M4

C11 = M1 + M3 - M2 + M6

20 / 52

http://www.skku.edu/new_home/eng/

Closest-Pair Problem:
 Divide and Conquer

2

)1(1

1

nn
k

n

k








• Brute force approach requires comparing every point with
every other point

• Given n points, we must perform 1 + 2 + 3 + … + n-2 +
n-1 comparisons.

• Brute force  O(n2)

• The Divide and Conquer algorithm yields  O(n log n)

• Reminder: if n = 1,000,000 then

• n2 = 1,000,000,000,000 whereas

• n log n = 20,000,000

21 / 52

http://www.skku.edu/new_home/eng/

Closest-Pair Algorithm

Given: A set of points in 2-D

22 / 52

http://www.skku.edu/new_home/eng/

Closest-Pair Algorithm

Step 1: Sort the points in one D

23 / 52

http://www.skku.edu/new_home/eng/

Lets sort based on the X-axis

O(n log n) using quicksort or mergesort

1

2

3

4

5

6

7

8

9

10
11

12

13

14

Closest-Pair Algorithm

24 / 52

http://www.skku.edu/new_home/eng/

Step 2: Split the points, i.e.,
Draw a line at the mid-point between 7 and 8

1

2

3

4

5

6

7

8

9

10
11

12

13

14

Sub-Problem 1 Sub-Problem 2

Closest-Pair Algorithm

25 / 52

http://www.skku.edu/new_home/eng/

Advantage: Normally, we’d have to compare
each of the 14 points with every other point.

(n-1)n/2 = 13*14/2 = 91 comparisons

1

2

3

4

5

6

7

8

9

10
11

12

13

14

Sub-Problem 1 Sub-Problem 2

Closest-Pair Algorithm

26 / 52

http://www.skku.edu/new_home/eng/

Advantage: Now, we have two sub-problems of
half the size. Thus, we have to do 6*7/2
comparisons twice, which is 42 comparisons

1

2

3

4

5

6

7

8

9

10
11

12

13

14

d1
d2

Sub-Problem 1 Sub-Problem 2

solution d = min(d1, d2)

Closest-Pair Algorithm

27 / 52

http://www.skku.edu/new_home/eng/

Advantage: With just one split we cut the
number of comparisons in half. Obviously, we
gain an even greater advantage if we split the
sub-problems.

1

2

3

4

5

6

7

8

9

10
11

12

13

14

d1
d2

Sub-Problem 1 Sub-Problem 2

d = min(d1, d2)

Closest-Pair Algorithm

28 / 52

http://www.skku.edu/new_home/eng/

Problem: However, what if the closest two
points are each from different sub-problems?

1

2

3

4

5

6

7

8

9

10
11

12

13

14

d1
d2

Sub-Problem 1 Sub-Problem 2

Closest-Pair Algorithm

29 / 52

http://www.skku.edu/new_home/eng/

Here is an example where we have to compare
points from sub-problem 1 to the points in sub-
problem 2.

1

2

3

4

5

6

7

8

9

10
11

12

13

14

d1
d2

Sub-Problem 1 Sub-Problem 2

Closest-Pair Algorithm

30 / 52

http://www.skku.edu/new_home/eng/

However, we only have to compare points inside
the following “strip.”

1

2

3

4

5

6

7

8

9

10
11

12

13

14

d1
d2

Sub-Problem 1 Sub-Problem 2

d d

d = min(d1, d2)

Closest-Pair Algorithm

31 / 52

http://www.skku.edu/new_home/eng/

Step 3: But, we can continue the advantage by
splitting the sub-problems.

1

2

3

4

5

6

7

8

9

10
11

12

13

14

Closest-Pair Algorithm

32 / 52

http://www.skku.edu/new_home/eng/

Step 3: In fact we can continue to split until each
sub-problem is trivial, i.e., takes one comparison.

1

2

3

4

5

6

7

8

9

10
11

12

13

14

Closest-Pair Algorithm

33 / 52

http://www.skku.edu/new_home/eng/

Finally: The solution to each sub-problem is
combined until the final solution is obtained

1

2

3

4

5

6

7

8

9

10
11

12

13

14

Closest-Pair Algorithm

34 / 52

http://www.skku.edu/new_home/eng/

Finally: On the last step the ‘strip’ will likely be
very small. Thus, combining the two largest sub-
problems won’t require much work.

1

2

3

4

5

6

7

8

9

10
11

12

13

14

Closest-Pair Algorithm

35 / 52

http://www.skku.edu/new_home/eng/

1

2

3

4

5

6

7

8

9

10
11

12

13

14

• In this example, it takes 22 comparisons to find the
closets-pair.

• The brute force algorithm would have taken 91
comparisons.

• But, the real advantage occurs when there are millions
of points.

Closest-Pair Algorithm

36 / 52

http://www.skku.edu/new_home/eng/

• Divide:
– Sort halves by x-coordinate.

– Find vertical line splitting points in half.

• Conquer:
– Recursively find closest pairs in each half.

• Combine:
– Check vertices near the border to see if any pair

 straddling the border is closer together than the minimum

 seen so far.

Closest Pair by Divide & Conquer

37 / 52

http://www.skku.edu/new_home/eng/

Closest Pair by Divide & Conquer

Step 1 Divide the points given into two subsets S1 and S2 by a vertical

 line x = c so that half the points lie to the left or on the line
 and half the points lie to the right or on the line.

Step 2 Find recursively the closest pairs for the left and right subsets.

Step 3 Set d = min{d1, d2}

 We can limit our attention to the points in the symmetric
 vertical strip of width 2d as possible closest pair. Let C1

 and C2 be the subsets of points in the left subset S1 and of
 the right subset S2, respectively, that lie in this vertical
 strip. The points in C1 and C2 are stored in increasing
 order of their y coordinates, which is maintained by
 merging during the execution of the next step.

Step 4 For every point P(x,y) in C1, we inspect points in
 C2 that may be closer to P than d. There can be no more
 than 6 such points (because d ≤ d2)!

38 / 52

http://www.skku.edu/new_home/eng/

Closest Pair by Divide & Conquer: Worst
Case

The worst case scenario is depicted below:

39 / 52

http://www.skku.edu/new_home/eng/

Closest Pair by Divide & Conquer: Algorithm

• Divide: draw vertical line L so that roughly ½n points
on each side.

• Conquer: find closest pair in each side recursively.

• Combine: find closest pair with one point in each side.

• Return best of 3 solutions.

40 / 52

http://www.skku.edu/new_home/eng/

Convex hull (definition)

• H is the smallest convex polygon that contains all the
points of Q

41 / 52

http://www.skku.edu/new_home/eng/

Convex hull (principle)

• Decompose the set of points in equal parts

(Qleft and Qright)

• Solve the sub‐problems respectively on

Qleft and Qright

• Merge both convex hulls Hleft and Hright

42 / 52

http://www.skku.edu/new_home/eng/

Convex hull Algorithm

Step 1 : Decomposition

 Sort the points

43 / 52

http://www.skku.edu/new_home/eng/

Convex hull Algorithm

Step 2 : Decomposition – Split part

Split the points into
two sets of equal size

44 / 52

http://www.skku.edu/new_home/eng/

Convex hull Algorithm

Step 3 : Solve Sub-Problems

Compute
the convex hulls on

Qleft and Qright

45 / 52

http://www.skku.edu/new_home/eng/

Convex hull Algorithm

Step 4 : Merge Both Solutions

46 / 52

http://www.skku.edu/new_home/eng/

Convex hull Algorithm

Step 4 : Merge Both Solutions

Determine
the upper tangent

47 / 52

http://www.skku.edu/new_home/eng/

Convex hull Algorithm

Step 4 : Merge Both Solutions

Determine
the upper tangent

48 / 52

http://www.skku.edu/new_home/eng/

Convex hull Algorithm

Step 4 : Merge Both Solutions

Determine
the upper tangent

49 / 52

http://www.skku.edu/new_home/eng/

Convex hull Algorithm

Step 4 : Merge Both Solutions

Determine
the upper tangent

50 / 52

http://www.skku.edu/new_home/eng/

Convex hull Algorithm

Step 4 : Merge Both Solutions

Determine
the lower tangent

51 / 52

http://www.skku.edu/new_home/eng/

Q & A

http://www.skku.edu/new_home/eng/

