Martin Martin, M. & Martin, M. & Walk, M.

Introduction

Algorithm

2014 Fall Semester

Algorithm

 An <u>algorithm</u> is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.

Algorithmic solution

Some Well-known Computational Problems

- Sorting
- Searching
- Shortest paths in a graph
- Minimum spanning tree
- Traveling salesman problem
- Knapsack problem
- Chess
- Towers of Hanoi
- Program termination

Constraint of the phonene in the constraint of the constraint of the phonene in the constraint of the phonene is a substraint of the phonene is a subs

Basic Issues Related to Algorithms

- How to design algorithms
- How to express algorithms
- Proving correctness
- Efficiency
- Optimality

Solution of the set of the s

Analysis of Algorithms

- How good is the algorithm?
 - Correctness
 - Time efficiency
 - Space efficiency

• Does there exist a better algorithm?

What is an algorithm?

Requirements:

1. Finiteness

terminates after a finite number of steps

2. Definiteness

> unambiguously specified

3. Input

➤ valid inputs are clearly specified

- 4. Output
 - can be proved to produce the correct output given a valid input
- 5. Effectiveness

➤ steps are sufficiently simple and basic

A constant of a process Constant of a process of an operating of a process of an operating of a process of a

Why study algorithms?

- Theoretical importance
 the core of computer science
- Practical importance
 - Framework for designing and analyzing algorithms for new problems

Express Algorithms

Expressing algorithms

- Natural languages
- Pseudo code
- Flowcharts
- Programming languages

Maria M, Santa M, San

10 / 19

Flowchart Symbols

Begin / End

Action step (Processing)

Decision making

Input / Output

Flow Lines

Simple Flowchart Example

Second State of State and State of State and State an

12 / 19

Two main issues related to algorithms

- How to design algorithms
- How to analyze algorithm efficiency

Algorithm design techniques/strategies

- Brute force
- Divide and conquer
- Decrease and conquer
- Transform and conquer
- Greedy Method
- Dynamic Programming
- Backtracking

Al I II II II II (Invest 7.4, Politike III, Rouel (Investige I.4, RT III (Investige Politike III) III (Investige IIII) III (Investige III) III (Investige III) III (Inve

Important problem types

- sorting
- searching
- string processing
- graph problems
- combinatorial problems
- geometric problems
- numerical problems

Problems of techniques

- Brute Force
 - Selection Sort
 - Bubble Sort
 - String Matching
 - Sequential Search
 - Traveling Salesman
 Problem
 - Knapsack Problem
 - Job Assignment
 Problem
 - Hamilton Circuits

- Merge Sort
- Quick Sort
- Binary Search
- Closest Pair
- Strassen's Matrix Multiplication
- Convex Hull

Problems of techniques (

- Decrease and Conquer
 - Insertion Sort
 - Graph Traversal
 Algorithm : Depth First
 Search
 - Graph Traversal
 Algorithm : Breadth
 First Search
 - Topological Sorting
 - Fake coin Problems
 - Multiplication à la russe
 - Josephus Problem
 - Euclid's Algorithm

- Transform and Conquer
- Holmand Ragmann, K.B. When and A. Samara, A.D. Schwarth Francesco, A.D. Schwarth Francesco, A.D. Schwarth Frankes, K.D. Streven, F. & Schwarther, Hu. & Schwarth Frankeson, K.D. Samara, K. & Schwart, Schwarth Frankeson, A.D. Samara, K. & Schwarth Frankeson, K. & Schwarther, Frank J. (1993) Schwarth Frankeson, K. & Schwarther, K. & Schwarth, K. & Schwarther, K
 - Presorting
 - Gaussian Elimination
 - Heap Sort

Problems of techniques (3

- Greedy Methods
 - Prim's Minimal
 Spanning Tree
 Algorithm
 - Kruskal's Minimal
 Spanning Tree
 Algorithm
 - Dijkstra's Single-Source
 Shortest Paths
 Algorithm
 - Coin Change
 - Scheduling Problem
 - Connecting Wires
- SungkyuGollecting Gold Coins

- Dynamic Programming
 - Floyd's Algorithm Shortest Paths
 - Warshall's Algorithm -Shortest Paths
 - 0/1 Knapsack Problem
 - Optimal Binary Search Trees

Problems of techniques (4)

- Backtracking
 - Solving a Maze
 - Coloring a Map
 - Traveling salesperson
 - The Queens Problem
 - Branch and Bound Assignment Problem

Q & A

